Barion Pixel First-order constant coefficient linear differential equations - The resonance | mathXplain

Contents of this Calculus 3 episode:

Constant coefficient, Homogeneous equation, Homogeneous solution, Particular solution, Method of Undetermined Coefficients, Trial Functions Method, Quadratic polynomial, Exponential expression, Expression with sine or cosine, General solution, Resonance.

Text of slideshow

In cases where the particular solution includes exponential expressions, well, we could face some problems.

The next slideshow will discuss that.

If the particular solution includes an term, then we may face some problems when trying to solve it.

The first step is to solve this so called homogeneous equation:

Then we proceed to the particular solution.

We substitute this into the original equation:

Next, let's see the meaning of resonance.

This occurs when there is in the particular solution, and its exponent is exactly the same as the exponent of the homogeneous solution.

This time the exponents are not the same, so there is no resonance.

But now, there is.

Let’ see what happens now.

So, it is equal to the homogeneous solution.

This is what we call “resonance”.

And in this case an x comes here.

Let's see another one.

The homogeneous solution is the usual one:

The particular solution will include a linear expression,

an ,

and another where there is resonance.


First-order constant coefficient linear differential equations - The resonance

Enter the world of simple math.
  • A website that would teach to integrate even a blind horse.

    Regina, 26
  • Much better than any of my university lectures.

    Daniel, 20
  • Available from home and much cheaper than a private tutor. I use it whenever I want.

    Milan, 19
  • I succeeded in graduating all of my college math subjects because of mathxplain.

    Melina, 21